\square Code No. : 21812

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD M.E. (Mech. Engg.: CBCS) I-Semester Main Examinations, January-2018

(Advanced Design \& Manufacturing)
Mathematical Methods for Engineers
Time: $\mathbf{3}$ hours
Max. Marks: 60
Note: Answer ALL questions in Part-A and any FIVE from Part-B

Q. No	Stem of the Question	M	L	CO	PO
	Part-A (10 $\times 2=20 \mathrm{Marks}$)				
1.	Find the directional derivative of $\emptyset=x^{2} y z+4 x z^{2}$ at $(1,-2,1)$ in the direction of $2 \mathbf{i}-\mathbf{j}-2 \mathbf{k}$.	2	1	1	10
2.	If $u \mathbf{F}=\nabla \mathrm{v}$ where u and v are scalar fields and \mathbf{F} is a vector field, show that F.curl $\mathbf{F}=0$.	2	2	1	10
3.	Define Solenoidal and Irrotational vectors.	2	1	2	10
4.	Express the relationship between the associated tensors $\bar{A}^{i k l}$ and $A_{p q r}$	2	2	2	10
5.	Write the mathematical formula for Cramer's Rule.	2	1	3	10
6.	Briefly explain LU decomposition.	2	2	3	10
7.	Compute the Laplace transform of $e^{4 t} \sin 2 t$ cost.	2	2	4	10
8.	Find the Laplace transform of \sin at using basic definition.	2	1	4	10
9.	Find the Fourier series of the function defined by $f(x)=\pi,-\pi \leq x \leq \pi$	2	2	5	10
10.	Find the Fourier series for the function defined by	2	2	5	10
	$\begin{aligned} & f(x)=0,-\pi \leq x<0 \\ & f(x)=\sin x, 0 \leq x \leq \pi \end{aligned}$				
	Part-B ($5 \times 8=40$ Marks)				
11. a)	Show that $\nabla \times(\nabla \times \bar{A})=\nabla(\nabla \cdot \bar{A})-\nabla^{2} \bar{A}$	5	2	1	10
	Find the unit normal vector to $x^{2}+y^{2}+z^{2}=5$ at $(0,1,2)$	3	1	1	10
12.	Let $A_{r s t}^{p q}$ be a tensor. Find the rank of $A_{r s t}^{p q}$ when $\mathrm{p}=\mathrm{t}$ and $\mathrm{q}=\mathrm{s}$	5	2	2	10
b)	Using tensor notation show that curl $\operatorname{grad} \varphi=0$	3	3	2	5
13. a)		5	4	3	5
	$x^{(1)}, y^{(1)}, z^{(1)}, w^{(1)}, x^{(2)}, y^{(2)}, z^{(2)}, w^{(2)}$ for the following system of equations				
	$3.49 x-0.25 y+9.21 z+0.05 w=1.32$				
	$5.25 x-1.77 y+8.97 z+0.1 w=4.35$				
	$\begin{aligned} & 1.73 x-2.1 y+3.37 z+7.23 w=12.49 \\ & 1.23 x-6.54 y+2.87 z+2.41 w=11.32 \end{aligned}$				
	Superscripts indicate iterations.				
b)	Find a, b and c so that the linear system $\begin{aligned} & x+2 y-3 z=a \\ & 2 x+3 y+3 z=b \\ & 5 x+9 y-6 z=c \text { is consistent. } \end{aligned}$	3	3	3	5

14. a) Solve the initial value problem $y^{\prime \prime}+4 y^{\prime}+3 y=e^{-t}, y(0)=y^{\prime}(0)=1$ by using Laplace transforms.
b) Find the inverse Laplace transforms of $\frac{4 s+5}{(s-1)^{2}(s+2)}$
15. a) A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially at rest in its equilibrium position. If it is vibrating by giving to each of its end points a velocity $\lambda x(l-x)$, find the displacement of the string at any distance x from one end at any time t.
b) Expand $f(x)$ in a Fourier series on the interval $-2 \leq x<2$ if $f(x)=0$ for $-2 \leq x<0$ and $f(x)=1$ for $0 \leq x<2$
16. a) Prove that $\operatorname{curl} \operatorname{curl} F=\operatorname{grad} \operatorname{div} F-\Delta^{2} F$
b) Verify the identity $A \cdot(B \times C)=B \cdot(C \times A)$ using tensor notation.
17. Answer any two of the following:
a) Find the Eigen values and corresponding Eigen vectors of matrix
$A=\left[\begin{array}{ccc}1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 4\end{array}\right]$
b) Find $L^{-1}\left\{\frac{\frac{s}{2}+\frac{5}{3}}{s^{2}+5 s+6}\right\}$
c) Given the non-orthogonal basis

$$
a_{1}=\mathbf{i}-\mathbf{j}-\mathbf{k}, a_{2}=\mathbf{i}+\mathbf{j}+\mathbf{k}, a_{3}=-\mathbf{i}+2 \mathbf{k}
$$

use the Gram-Schmidt orthogonalization process to find the orthonormal basis.

5	3	4	5
3	2	4	10
5	5	5	12
3	4	5	5
4	1	1	10
4	2	2	10
4	6	3	12
4	3	4	5
4	2	5	10

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 \& 2)	58.75
2	Knowledge on application and analysis (Level-3 \& 4)	30.00
3	*Critical thinking and ability to design (Level-5 \& 6)	
(*wherever applicable)	11.25	

